STUDY OF THE FORMATION OF THIXOTROPIC
STRUCTURED SYSTEMS*

E.E. Rafales-Lamarka and B. A. Lishanskii UDC 532.135: 541,182

An analogy is established between phase transitions of the second kind and processes of
thixotropic structure-formation in dispersed media.

It is well known that the whole rheological curve of thixotropic systems may be arbitrarily divided
into three parts, characterized by different degrees of breakdown of the structure [1]. The existence of
three states, corresponding to different mechanisms of the breakdown of structured systems, suggests
that the description of these states requires corresponding mathematical expressions.

It is quite clear that the one- and two-term equations generally employed to describe such systems
can only be regarded as approximate. Investigations show that, on subjection to certain external actions
(temperature, vibration, etc.), there is a sharp change in the structural and mechanical properties of dis-
persed systems [2-5].

The problem here under consideration is that of establishing the physical laws governing the forma-
tion of thixotropic structured systems, using methods of hydrodynamiecs, rheology, information theory,
and the mathematic apparatus of Markov processes.

It is well known [5] that for the laminar flow of a viscous liquid mass diffusion does not play any sub-
stantial part, and the momentum of the frictional forces can only be transmitted by molecular interactions.

For a uniform laminar plane-parallel flow, the rate of flow v depends on the distance from the sta-
tionary wall y, i.e.,

U:Ux:f(y)! vy:Z’z:Ox

* This paper was presented to the seventh Symposium on the Rheology of Polymers in Moscow, April 10-
14, 1972,
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Fig. 1 ' : Fig. 2
Fig. 1. Schematic representation of the bonds between the aggregates:
continuous curve A (unbroken bond); broken curve B (rupturing bond);
the points represent particles of the dispersed phase.

Fig. 2. Temperature of BN-IV bitumen as a function of the velocity gra-

dient, according to [7]; t, °C; €, sec™l.
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Fig. 3. Relative viscosity of the system at various
temperatures, expressed as a function of its entropy:
1).at t = 70°C; 2) 80; 3) 90; 4) 100; 5) 110; 6) 120; 7)
130; 8) 140; 9) 150; 10) 160; 11) 170. Continuous
line, calculated values based on Eq. (13); points and
broken lines, experimental data [7].

while the particles of the medium rotate at an angular velocity w equal to half the shear velocity, as well
as executing translational motion.

For the laminar steady-state flow of a dispersed system, the frictional forces acting from the direc-
tion of the dispersion medium set the particles of the dispersed phase in translational and rotational

motion, the components of the angular velocity (of the vortex) being expressed in the form
1 dov 1 1

o, =0, =0, 0, =—— % =—?'\, sec™, (1

where € is the velocity gradient.

In the case of thixotropic structured systems, the elementary vortex may consist of a group of mole-
cules or elements of the dispersed phase and the dispersion medium, rotating as a single aggregate. Ata
constant temperature and shear velocity these aggregates are (on the average) stable, i.e., their elements
are united by unruptured bonds (Fig. 1). Furthermore, temporary bonds also exist between the aggre-
gates; these are constantly being broken and reestablished; they serve to exchange the momenta of the
viscous-frictional forces.

In order to elucidate the mechanism underlying the formation and rupture of thixotropic structures,
we arbitrarily divide all the internal forces of interaction into three groups. The first group contains the
forces which create stable bonds inside the aggregate; the second group is characterized hy forces capable
of creating "virtual" bonds (those alternately being broken and reformed); finally, the third group contains
those forces which (under the conditions prevailing) play no part in bond formation.

In order to describe the mechanism underlying the formation and breakdown of the thixotropic struc-
ture, we express the number of virtual bonds Ny, in the form of a sum of the number of actual bonds Ny
existing at a specific instant of time under specified external conditions and the number Ny, of temporarily
broken bonds still capable of being restored, i.e.

Ny =N, -+ Ny, (2)
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- It is reasonable to assume that, under steady-state conditions, at a specific instant of time, the
breakdown-restoration process of the bonds in thixotropic structures, i.e., the transition of actual bonds
into broken bonds and vice versa, is reproducible. Thus, on repeating the defining conditions, the numbers
Na, Ny, and Nip, and also the number of transitions per unit time nty, should reproduce themselves. This
may also be expected from the fact that the effective viscosity of the system depends solely on the tempera-
ture, t°, the velocity gradient, or the parameters of the vibratory actions (amplitude and frequency).
Starting from this basis, it is convenient to take the Markov chain as a mathematical apparatus for de-
scribing the behavior of thixotropic structured systems.

The proposed structural model may be formulated in the following way: the thixotropic system is,
in effect, a space of random singularities (virtual bonds) which may appear in one of two states: The first
(1) makes the assertion "a bond exists", with a probability Py, and the second (2), makes the assertion
"there is no bond", with a probability P,;. The transition of the first state into the second, i.e., the
breakdown of the bonds of the thixotropic structures, is effected with a probability P;,, the transition from
the second state to the first (restoration of the bonds of the thixotropic structures) with a probability Py, .
The following conditions have here to be satisfied [6]:

P11~§-P12=1and P2]+P22=l. (2')

Clearly in the steady-state condition we have a dynamic equilibrium, i.e., the number of transitions
n¢p from the first state to the second equals the number of transitions in the opposite direction, i.e.,

Bp = NPy = Ny Poy. (3)
Since N = Ny—Ng, from Eq. (3) we obtain
N, =Ny Pu__ (4
P12 + P21

For large values of Ny the proportion of virtual bonds w existing in the first state (for a specific
steady-state mode of flow of the thixotropic system) is expressed in the form

N, Py
Nv P12 + le
Allowing for (4) and (5), Eq. (3) takes the form

Py
Py + Py

Mgy = NV P12 = vaplz' (6)

For constant external actions (temperature, vibration parameters), as the rate of rotation of the
aggregate (w) increases, the probability of the restoration of broken bonds P, diminishes, since the molec~
ular restoring forces have to overcome the rotational kinetic energy, which increases with increasing
rate of rotation. The probability of the breakdown of the thixotropic structure Py, then increases also.

According to (2'), Py, < 1; hence
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PPy < Ny 1Py — vf( ) (M
Pyy Py 1+ Py :

Thus with increasing velocity gradient & the structure breaks down, and the number of actual bonds
Ny declines. The probability of finding virtual bonds in the first state and the number of transitions from
the first state into the second also diminish, and this leads to a reduction in the effective viscosity of the
system. This justifies us in considering that the effective viscosity of the thixotropic structures is a func-

tion of the probability of the first state, i.e.,

1
g, =N ;
tr B e

1
w :IVa/Nv=<P("—é‘)- (8)

Let us establish a relationship between the effective viscosity of the system 71 and the probability of
finding actual bonds of the thixotropic structure in the first state (w). It is already known from information
theory that a system consisting of elements (singularities) capable of existing in one of two states is char-
acterized by a degree of indeterminacy, namely, the information entropy Hy(w), expressed in the form
[6-9]: : :

H,(w) = —[wlog, @ -+ (1 —w)log, (1 —w)], bit, (9
where (1—w) is the proportion of virtual bonds in the second state.
It follows from (7) that
(Mg Imax,, ~ Mmax,.- (10)

Allowing for (7), (9), and (10) we may consider that for t° = const

A\

, 1
T Mmax =f1(”tr )ta =f, ( : )

;

o fg( : )f [ (@) = @ [H, (w))t". (11)
Taking account of (8), we accept that w = éo/é, where éo, sec™! is an experimental coefficient depend-
ing on the temperature.

Thus
&
N/ pax = @ | ( - R (12)

It follows from Eq. (12) that a correlational relationship should exist between the effective viscosity of the
system and the information entropy. If the results of our analysis of the experimental data are expressed
in the form of a relationship t° = f(£), the boundaries of the three parts of the rheological curve

M= fl (te): Ul : f‘.’. (to’ 8)’ Nmin = f3 (to)]

may be most readily appreciated. This is confirmed by Fig. 2, which are constructed with due allowance
for the results of the investigations described in [7]. Analysis of these data shows that in the first region
() the number of virtual bonds is a maximum and is constant for a specified temperature; this corresponds
to the greatest effective viscosity of the system. In the second region (II) the number of these bonds de-
clines with increasing velocity gradient or temperature, which leads to a reduction in the effective viscos-
ity of the system. Finally, in the third region (III) the number of virtual bonds falls to a minimum, while
the viscosity is equal to the minimum viscosity of the system at the temperature in question.

On the basis of the foregoing discussion, the entropy of the system should also diminish. An analysis
of earlier arguments also leads to the conclusion that, if we arbitrarily assume that the regions under
consideration constitute phase states of the dynamic system, the transition from one region into another
may, by analogy, be considered as a phase transformation of the second kind [8]. This is explained by the
fact that the information entropy of the system, which characterizes its effective viscosity, varies contin-
uously. In addition to this, the first derivative of the information entropy with respect to the temperature
or velocity gradient only changes discontinuously at the transition point (Fig. 2).

As a result of an analysis of the experimental data of [7] it was established that, on varying the tem-
perature of BN-IV bitumen from 70 to 170°C, the temperature dependence of the experimental coefficient
g, was linear. Hence in this case we have

N Mmax = HZ (), bit, . (13)
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Figure 3 shows the dependence of the relative viscosity on the entropy of the system, i.e. %/Mmax
=f[Hy (w)]. This figure illustrates the satisfactory agreement between the experimental and calculated
data. An analysis of the results of these investigations shows that for every temperature there is a specific
value of the entropy at which the thixotropic system starts behaving as a Newtonian liquid with a minimum
viscosity (broken lines in Fig. 3); with increasing e¢o or Hy(w)¢e the ratio n/nyax diminishes and tends to-
ward a constant value, equal to Nymin/Mmax. The investigations also show that with increasing bitumen
temperature the fall in 94,55 takes more rapidly than nmin, leading to an increase in the ratio n/mmax = f*
[Hy (w)], as may be seen from Fig. 3.

Since the shear stress P = 7¢, we have

-8 H, (w
P:nma};_l‘sﬂ . = Thax o 2 ) (19
max o 4
Denoting
Po = Tmax .sozf(ts)v (15)
we obtain
H, ()
p=p, @ (16)
w
Figure 4 illustrates the relationship
B _pipipy. (an
w

This figure also shows satisfactory agreement between the experimental and calculated data.

Thus the use of the methods described in this paper is very effective when studying the behavior of
thixotropic structured systems subject to various external actions.

NOTATION

v, rate of flow; y, distance from stationary wall; vy, Vy, Vg, projections of flow velocity; f~(y),
function of coordinate y; w, angular frequency; wy, wy, wg, projections of angular frequency; &, velocity
gradient; Ny, number of virtual bonds; Ny, number of actual bonds; Ntp, number of temporarily broken
bonds; ntr, number of transitions-per-unit-time;t°, temperature; Py, probability of effecting the first
state ("a bond exists"); P,,, probability of effecting the second state ("there is no bond"); Py, probability
of a transition from the first state into the second; P,, probability of a transition from the second state,
into the first; w, proportion of virtual bonds in the first state; 7, effective viscosity of the system; H,,
information entropy of the system; nmax, maximum effective viscosity of the system; 17y, viscosity of
an almost unbroken structure; 7)min, minimum viscosity of almost completely broken structure; P, shear
stress.
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